This article was downloaded by: [Tomsk State University of Control

Systems and Radio]

On: 19 February 2013, At: 12:48

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street.

London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl17

Two Examples of Molecular Semiconductors: Phthalocyanine Complexes of Lithium and Lutetium

P. Turek $^{a\ b\ c}$, P. Petit $^{a\ b\ c}$, J.-J. Andre $^{a\ b\ c}$, J. Simon $^{a\ b\ c}$, R. Even $^{a\ b\ c}$, B. Boudjema $^{a\ b\ c}$, G. Guillaud $^{a\ b\ c}$ & M. Maitrot

^a Groupe de Recherches Interdisciplinaires sur les Matériaux Moléculaires (G.R.I.M.M.);, I.C.S., 67083, Strasbourg, France

^b E.S.P.C.I., 75231, Paris, Cédex, France

^c U.C.B., 69100, Villeurbanne, France Version of record first published: 13 Dec 2006.

To cite this article: P. Turek , P. Petit , J.-J. Andre , J. Simon , R. Even , B. Boudjema , G. Guillaud & M. Maitrot (1988): Two Examples of Molecular Semiconductors: Phthalocyanine Complexes of Lithium and Lutetium, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 161:1, 323-327

To link to this article: http://dx.doi.org/10.1080/00268948808070256

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt., 1988, Vol. 161, pp. 323-327 Reprints available directly from the publisher. Photocopying permitted by license only. © 1988 Gordon and Breach Science Publishers S.A. Printed in the United States of America

TWO EXAMPLES OF MOLECULAR SEMICONDUCTORS: PHTHALOCYANINE COMPLEXES OF LITHIUM AND LUTETIUM

Ρ. TUREK, P. PETIT, J.-J. ANDRE, J. SIMON, BOUDJEMA, EVEN, В. G. GUILLAUD M. MAITROT Groupe de Recherches Interdisciplinaires Matériaux Moléculaires (G.R.I.M.M.); I.C.S., 67083 Strasbourg, France; E.S.P.C.I. 75231 Paris Cédex, France, and U.C.B., Villeurbanne, France.

"molecular semi-<u>Abstract</u>. The designation conductor"has never received any clear cut The following definition. criteria are proposed : (i) it is a molecular material constituted of molecular units which can individually synthesized (ii) its intrinsic conductivity is in the range $10^{-6} \cdot 10^{-1} \Omega^{-1} \, \text{cm}^{-1}$ doped with can be electron donors form n-or pand/or electron acceptors to doped materials. This paper deals with description of the electrical properties of phthalocyanine lithium PcLi and lutetium bisphthalocyanine Pc2Lu, in the intrinsic and extrinsic conduction ranges.

The synthesis of both Pc_2Lu and PcLi has been previously described I^{-4} .

FIGURE 1. Chemical representation of bisphthalocayninato-lutetium (Pc_2Lu) and lithium phthalocyanine (PcLi).

The electrical properties of Pc, Nd, compressed pellets^{5,6} or doped with electron acceptors⁷ were described. The conduction found did not distinguish it from many other molecular uitously or dioxygen⁸. derivatives doped, fortuitously impurities such as Electrical properties of Pc2Lu and PcLi have been determined for sublimed thin films and studied under vacuum (Table 1).

	solid state			solution		
	$\sigma_{\rm RT},~\Omega^{-1}~{\rm cm}^{-1}$	E, eV	μ_e , cm ² /(V·s)	$E_{1/2}^{\text{ox}}$, V	$E_{1/2}^{\text{red}}$, V	E_{cated} , eV
PcH ₂	SC <10 ⁻¹² TF	2.00	1.2 10 ⁻² -10 ⁻³	+0.86	-0.58	
PcCu	SC <10 ⁻¹² TF <10 ⁻¹⁰	2.00 1.98	7 10 ⁻²	+0.98	-0.84	2.2
PcNi	SC <10 ⁻¹²	2.28		+1.05	-0.85	2.6
Pc ₂ Lu	SC 6×10^{-5} TF $\sim 10^{-5}$	0.64 0.52	1.3	+0.03	-0.45	0.9
PcLi	SC 2×10^{-3} TF $10^{-4} - 10^{-5}$	0.2		+1.0	+0.17	1.1

TABLE 1. Electrical properties of thin films and single crystals (SC) οf metallophthalocyanines. σ_{RT} : room temperature conductivity; E: thermal activation energy μ_e : electron mobility; E_1 : redox potentials; E_{calcd} : activation energy calculated from redox potentials. (after ref. 9,10)

This procedure is known to avoid the presence of impurities even in minute amounts. The intrinsic conductivity is found to be 10^{-5} for thin films of Pc_2Lu and 10^{-4} - 10^{-3} for PcLi. This is the first time that sublimed thin films of molecular materials have shown such high conductivity. The

to a thin

also

may

value found for single crystals of Pc_2Lu is of the same order of magnitude ($\sim 6 \times 10^{-5}$). It is significantly higher in the case of PcLi (2 10^{-3}). This will be shown to be correlated with the interunit interaction energy leading delocalized electronic states for PcLi of plocalized ones for Pc2Lu. The possibility and n-doping by the co-sublimation technique been demonstrated for Pc, Lull. Electron Spin Resonance studies were carried on Pc_2Lu^{12} and $PcLi^{13}$ single crystals. For Pc₂Lu, a signal is observed at g=2.0021 with a linewidth $\Delta H_{pp} = 0.7G$. The susceptibility Curie Weiss behavior with $\theta \sim 6K$. The shows a The magnetic behavior PcLi drastically different. At οf i s température an extremely narrow line $(\Delta H_{pp} = 25mG)$ temperature is observed аt == 2.0020. g dependence demonstrates strong antiferromagnetic coupling in the Ιt direction. is possible to estimate interunit interaction energy by using a H $\rm model^{12,14}$. The interaction energy is 12 meV Hubard Pc₂Lu and more than 250meV for PcLi. A classical band model may therefore only be applied to the latter case. For conventional diamagnetic PcM, conductivities are, in all cases, less than $10^{-10}\Omega^{-1}$ cm⁻¹. The conductivity of single crystals of Pc₂Lu and PcLi are $6\times10^{-5}\Omega^{-1}$ cm⁻¹ and $2\times10^{-3}\Omega^{-1}$ cm⁻¹, respectively. The thin film conductivity is unchanged for Pc2Lu and lower by a factor of 100 in the case of PcLi. This is clearly related to the difference in interunit interaction energy. first examples and PcLiare the Pc₂Lu intrinsic molecular semiconductors with localized or delocalized electronic states, respectively. of the charge carriers mobility calculated from the thermal activation energy conduction bу assuming that the number $\begin{array}{ccc} \text{conduction} & \text{states} \\ \text{molecular} & \text{units}^{16} \\ 10^{16} & \text{carriers} & \text{per} \end{array}$ the is equal to number of per cm³ E=0.5eV, this leads to

The mobility Pc₂Lu. calculated from current-voltage curves space charge limited region 17. In this in the region 1. In this is found 10. The case, a value of $1.3cm^2/v.s.$ The apparent different discrepancy is due to the

 10^{16} carriers per cm³ (10ppm m:m) and mobility of the order of 6 10^{-3} cm²/v.s. for

οf

films

migration processes involved in the two cases. In SCLC determinations, a charge is injected from the electrode into the molecular semiconductor and the mobility determined is correlated with interunit hopping energy:

$$A^{\Theta}$$
, $A \iff A$, A^{Θ} A: molecular unit

In the second case, the generation of charge carriers involves, additionally, the dissociation of an ion pair:

$$A , A \iff A^{\oplus} , A^{\ominus} \iff A^{\oplus} A^{\ominus}$$

An order of magnitude estimate of the ion pair binding energy, Eip, may be calculated from classical electrostatic laws. A value of Eip

0.2-0.3eV is found^{8,18}. Since
$$\exp(-\frac{217}{2kT})=10^{-2}-10^{-3}$$

at room temperature, this rationalizes the mobility difference previously noticed. In conclusion, it has been shown that macrocyclic

intrinsic radicals can lead to molecular οf semiconductors because their peculiar redox properties. The charge carrier mobility observed in thin films is shown to be strongly dependent High speed pair trapping. electronics upon ion devices can be obtained however by the charge carrier migration path $^{19}\,.$ diminishing

CNRS, Acknowlegment. MRES and CNET are financial support. acknowledged for C. Clarisse thanked for and M.T. Riou are the synthesis of Pc₂Lu. M. Bernard and M. Keyser are thanked for technical assistance.

REFERENCES

- P.N. Moskalev and I.S. Kirin, <u>Russ. J. Phys.</u> <u>Chem.</u>, <u>46</u>, 1019 (1972).
- C. Clarisse and M.T. Riou, <u>Inorg. Chim.</u> <u>Acta</u>, <u>130</u>, 139 (1987).
- H. Sugimoto, T. Higashi and M. Mori, J. Chem. Soc. Chem. Commun., 622 (1983).

- H. Homburg and W. Kalz, Z. Naturforsch., 33b, 1067 (1978); Z. Anorg. Allg. Chem., 514, 115 (1984).
- I.S. Kirin and P.N. Moskalev, <u>Russ. J. Phys.</u> <u>Chem.</u>, <u>41</u>, 251 (1967).
- 6. M. Yamana, M.Tsutsui and J. S. Ham, J. Chem. Phys., <u>76</u>, 2761 (1982).
- 7. L.W. ter Haar, W.E. Hatfield and M. Tsutsui, Mol. Cryst. Liq. Cryst., 107, 181 (1984).
- 8. J. Simon and J.-J. André, <u>Molecular Semiconductors</u>, (Springer Verlag, Berlin, 1985).
- 9. J.-J. André, K. Holczer, P. Petit, M.-T. Riou, C. Clarisse, R. Even, M. Fourmigué and J. Simon, <u>Chem. Physics Letters</u>, <u>115</u>, 463 (1985).
- 10. P. Turek, P. Petit, J.-J. André, J. Simon, R. Even, B. Boudjema, G. Guillaud and M. Maitrot, J. Amer. Chem. Soc., 109, 5119 (1987).
- 11. M. Maitrot, G. Guillaud, B. Boudjema, J.-J André, H. Strzelecka, J. Simon and R. Even Chem. Phys. Letters, 133, 59 (1987).
- 12. P. Petit, K. Holczer and J.-J. André, <u>J. Physique</u> (Paris), <u>48</u>, 1363 (1987).
- 13. P. Turek, J.-J. André and J. Simon, <u>Solid</u> <u>State Comm.</u>, <u>63</u>, 741 (1987).
- J. Hubbard, <u>Proc. Roy. Soc.</u>, <u>276</u>, 238 (1963).
- 15. L.E. Lyons, Aust. J. Chem., 33, 1717 (1980).
- A. Sussman, <u>J. App. Phys.</u>, <u>30</u>, 2738 (1967).
 M. A. Lampert, Injection Currents in Solids
- M.A. Lampert, <u>Injection Currents in Solids</u>, (Academic Press, New York, 1965).
- D.M. Pai and R.C. Enck, <u>Phys. Rev.</u> <u>B11</u>, 5163 (1975).
- E.T. Jones, O.M. Chyan and M.S. Wrighton, <u>J.</u>
 <u>Amer. Chem. Soc.</u>, <u>109</u>, 5526 (1987).